
Dalsoft’s
Random Testing

Reference Manual
version 3.1

for the Linux/Windows operating systems

www.dalsoft.com/drt.html

https://www.dalsoft.com/drt.html

General
drt - Dalsoft’s Random Testing package provides a framework for automated
software testing (fuzzing); it permits the repeated execution of user-provided
algorithms allowing to control the execution by specifying

• means to establish input data
• termination condition and/or execution duration (time and/or number of

cases)
• reporting execution statistics

It provides a C++ class which may be used to establish code execution frame.

drt may be particularly useful in number of ways:

• to run the code in controlled manner
• to recreated the case(s) were a problem was detected for further

investigation (e.g. debugging)
• to study the implemented algorithm and to obtain statistics about it

drt also provides a standalone random numbers generator that allows to control
random numbers generation and to generate random numbers of a various
kind. This standalone random numbers generator may be used in C and C++
programs.

Technical specifications

Current version: 3.1

Source code in: C++,C

Operating system supported: Linux, Windows

Documentation: manual

Support: on-line

WE ASSUME NO LIABILITY WHATSOEVER, AND DISCLAIM ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF OUR PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Our products are not intended for use in
medical, life saving, life sustaining, critical control or safety systems, or in
nuclear facility applications The software described in this document may
contain software defects which may cause it to deviate from expected
behavior.

2

Installation

The release package includes:

drt.h – include file for Linux/Windows

linux_libdrt.a – library for Linux

windows_libdrt.lib – library for Windows.

To install drt, copy the provided library (e.g. linux_libdrt.a) and the include
file (drt.h) into the appropriate working directories: on Linux it may be
/usr/local/lib64 for libdrt.a and /usr/local/include for drt.h renaming the library
as libdrt.a; e.g. on Linux do:

sudo cp linux_libdrt.a /usr/local/lib64/libdrt.a

Compiling and linking with the drt library
This section describes how to use the drt with your programs.

To use drt in C++ programs, you must #include the file drt.h in every source
file that calls drt functions, accesses drt global variables, or uses constants
defined by drt.

The procedures for linking drt with the rest of your program vary according to
the compiler and method you are using. For example

g++ mandyprogram.cpp -ldrt

It was observed that on Linux, in certain cases, it is necessary to specify -no-pie
option while linking object files with the drt library.

Random numbers generation
drt is based on the ability to generate random data of different kind and
currently provides two types of random number generation engines

1. stc: based on the routine rand and related to it from the standard C
library.

2. mt19937: a variant of the twisted generalized feedback shift-register
algorithm that is known as the “Mersenne Twister” generator.

Random number generation of different data types is based on these random
number generation engines.
Although there are no convincing guarantees about the quality of random
numbers returned, it should be good enough for a casual use.

drt supports two kind of random generation: implicit and explicit. Following there

3

is a detailed explanation about these functionality, here we just provide a brief
overview.

• implicit
drt keeps only one instance of random generator, The internals are
hidden from the user. This kind of random number generation is not
thread safe and may not be used in multi-threaded (parallel)
environment.

• explicit
drt allows to create and use many instances of random generator. The
user is responsible for creation, maintenance and destruction of these
instances of random generator. The internals are mostly hidden from the
user. This kind of random number generation is thread safe and may be
used in multi-threaded (parallel) environment.

Note that drt itself uses only implicit random generation. The standalone random
data generator, offered by drt, allows for both - implicit and explicit - kinds of
random generators to be used.

Evaluation of the random number generation engines
The following are some of the results of evaluation of these random number
generation engines - we generated one million samples using these engines
and analyzed the results as described here. The stc random number generation
engine was based on the GNU libc version 2.33.

Data analysis:
stc

Entropy = 7.954457 bits per byte.

Optimum compression would reduce the size
of this 400000000 byte file by 0 percent.

Chi square distribution for 400000000 samples is
24987700.24, and randomly
would exceed this value less than 0.01 percent of the times.

Arithmetic mean value of data bytes is 111.5039 (127.5 =
random).
Monte Carlo value for Pi is 3.485869115 (error 10.96
percent).
Serial correlation coefficient is -0.049173 (totally
uncorrelated = 0.0).

mt19937
Entropy = 7.999999 bits per byte.

Optimum compression would reduce the size
of this 400000000 byte file by 0 percent.

Chi square distribution for 400000000 samples is 290.56, and
randomly

4

http://www.fourmilab.ch/random/

would exceed this value 6.23 percent of the times.

Arithmetic mean value of data bytes is 127.5022 (127.5 =
random).
Monte Carlo value for Pi is 3.141552871 (error 0.00 percent).
Serial correlation coefficient is -0.000037 (totally
uncorrelated = 0.0).

It shall be pointed out that stc generates 31 bits random numbers while mt19937
generates 32 bits random numbers - this favors results of data analysis of
mt19937 over stc.

Using drt
Later in this document we provide the detailed example of drt use. Here we
outline the general guidance for this.

drt provides C++ class CDRT. One of the ways to use drt is for user to define it
own class derived from CDRT:

class MyTest : public CDRT

 {
...

and then

int main(int ac, char **av)

 {

 MyTest rt;

 int stat;

 stat = rt.m_GetOptions(ac, av); defined in CDRT
 if (stat == DRT_OPTION_EXIT_OK)

 {

 exit(0);

 }

 else if (stat == DRT_OPTION_EXIT_ERROR)

 {

 exit(1);

 }

 // if (stat == DRT_OPTION_OK)

 rt.m_RunTest(); defined in CDRT

 exit(0);

5

 } /* main */

Programming with drt
This section describes the members of the class CDRT provided by drt.

Working Environment
drt allows to establish means to control the execution of your algorithm as
following. The default values are provided, the means to overwrite these
defaults is possible by specifying input at the invocation of the program and/or
calling provided by drt routine m_GetOptions. Note that drt utilizes implicit kind of
random generation.

controlling duration of the executions

The program run duration is controlled by the following parameters; program
execution is halted by the first fulfilled parameter.

-t # - time in seconds to run test for, 0 - unlimited; test runs for 10 seconds
if this parameter is not specified`
-c # - number of cases to execute, unlimited if this parameter is not specified
-sfe - request to stop on the first error

Note that for time calculation drt uses the total amount of time spent executing
in user mode or, if not available, the processor time consumed by the program.
For multi-thread programs, this may differ from the time spent by the program
execution.

establishing initial environment

If using random number generator provided by drt, in order to be able to
recreate the running data use the parameter -nsi # - generate new seed for
random number generator using the specified argument as a seed. Specifying -
nsi # with the same parameter causes the same random numbers to be
generated thus allowing to repeat test execution on the same data.
If using random number generator provided by drt, in order to establish
different running data for different runs, use the parameter -ns - generate new
seed for random number generator using random seed.

In order to establish (recreate) execution environment the parameters -s # and
-srn # may be used. Note that the parameter -s # causes the function
m_GenRandData to be called the specified number of times - the accuracy of
such an approach depends on the implementation of this function. The more
reliable way to recreate execution environment is to use the parameter -srn #
that causes the random number generator of the established engine to be
called the specified number of times; use

6

drt_rand_getRandNumbersGenerated() to obtain the number of calls that
are performed and is desirable to skip on the next invocation. Also you may use
m_GetRandNumbersGeneratedBeforeCrntTest and print it in the test
report (see m_DumpReport()) and later skip that number of calls to arrive at
the desirable data.

Member functions

General Control

m_GetOptions

int m_GetOptions(int ac, char **av)

m_GetOptions assumes it arguments ac and av to be C-style arguments
similar to those main is called to begin execution

1. ac is number of arguments in av to be processed
2. av is a pointer to an array of character strings that contain the

arguments, one per string

The following is a list of the parameters and descriptions of their functionality:
-t # - time in seconds to run test for, 0 - unlimited; test runs for 10
seconds if this parameter is not specified
-c # - number of cases to execute; unlimited if this parameter is not
specified
-s # - number of cases to skip; 0 if this parameter is not specified
-srn # - number of calls to the random number generator to skip; 0 if this
parameter is not specified
-ns - generate new seed for random number generator using random
seed
-nsi # - generate new seed for random number generator using the
specified argument as a seed
-sfe - request to stop on the first error
-rng_stc - establish stc as the engine for random number generation
(explained later)
-rng_mt19937 - establish mt19937 as the engine for random number
generation (explained later)
-param0 #...-param9 # - accept a numeric integer parameter that may be used
by the implemented code
-dparam0 #...-dparam9 # - accept a numeric double-precision parameter that
may be used by the implemented code; available only for Linux version
of the product
-h - prints short help message and exits
-help - prints short help message and exits

Return values:
DRT_OPTION_OK - all parameters were properly specified
DRT_OPTION_EXIT_OK - all parameters were properly specified and
terminating parameter (e.g. -help) was identified

7

DRT_OPTION_EXIT_ERROR - parameters specified couldn't be parsed

m_GetParam

long m_GetParam(unsigned int indx) const;

Return the value of the command line integer parameter -param<indx> #, e.g
m_GetParam(2) returns the value of the command line parameter -param2; if
parameter is not specified or wrong index - 0 is returned.

m_GetDParam

double m_GetDParam(unsigned int indx) const;

Return the value of the command line double-precision parameter -dparam<indx> #,
e.g m_GetDParam(2) returns the value of the command line parameter -
dparam2; if parameter is not specified or wrong index – 0. is returned. Available
only for Linux version of the product.

Running and monitoring test executions

m_GenRandData

virtual void m_GenRandData() = 0;

Routine to initialize data for execution/verification of a test. Initializes
underlying data records and MUST BE PROVIDED BY THE USER .

m_ShallTerminateRunTest

virtual int m_ShallTerminateRunTest();

Return not a zero value if test execution shall be terminated, zero value
otherwise.
The standard (provided by drt) implementation of this routine trigers
termination of the test execution
if interrupt (e.g. Cntrl-C) was detected or of the option -sfe (request to stop on
the first error) was established and an error was detected (e.g. failure of the
current test).

m_TestRandData

virtual int m_TestRandData() = 0;

Routine that executes the test for the currently established data and verifies
the result(s) of execution. MUST BE PROVIDED BY THE USER .

Return values:
DRT_ATTEMPTED_RUN_OK - the current test was successfully executed
and the results of execution were verified without any error being
detected

8

DRT_ATTEMPTED_RUN_FAILED - the current test was successfully
executed and the results of execution were verified with error(s) being
detected
DRT_ATTEMPTED_NOT_RUN - the execution of the current test was not
attempted or shall be ignored

m_RunTest

virtual void m_RunTest();

Routine that initializes data for execution/verification of a test, executes the
test for the currently established data and verifies the result(s) of execution.
May be provided by the user.

m_GetCrntTestNumber

unsigned long m_GetCrntTestNumber() const;

Return the test number of the test for which the data being established or
which is currently executed.
The test are numbered beginning from 0 (test 1 having current test number
being 0).
The standard (provided by drt) implementation of the routine m_RunTest()
initializes and updates test numbers. If the routine m_RunTest() is
overwritten, the return value of this function is undefined.

m_GetRandNumbersGeneratedBeforeCrntTest

unsigned long m_GetRandNumbersGeneratedBeforeCrntTest() const;

Return the number of calls made to the random number generator before the
current test. May be useful to recreate execution environment using -srn #
parameter.

m_DumpReport

void m_DumpReport();

Prints the general statistics accumulated by drt during the execution.
The printing information includes:

Total - total number of cases that were processed: number of cases that were
skipped plus number of cases that were attempted to be executed
Attempted - number of cases that were attempted to be executed
Done - number of cases that were actually executed
Execution time - time in seconds that too to execute test cases; doesn't
include time that took to skip unwanted cases
error count - number of times m_TestRandData returned
DRT_ATTEMPTED_RUN_FAILED
Random number generator seed used - invoking the package with the nsi
parameter being equal to the printed value allows the same data to be

9

generated

For example, the following is output generated by the m_DumpReport routine
with drt being invoked in the following way:

-s 120 -t 10
(skip 120 cases and run for 10 seconds)

Total 136, Attempted 16, Done 16 cases for 10.1676 seconds
error count = 11.
Random number generator seed used 1588429226.

Standalone random data generator
drt may be used as a general purpose random data generator for C and C++
code.

drt supports two kind of random generation: implicit and explicit.

implicit random generation
In implicit random generator drt keeps only one instance of random generator.
The internals are hidden from the user. The name of every implicit random
generation routine begins with drt_rand_, e.g drt_rand_int.

This kind of random number generation is not thread safe and may not be used
in multi-threaded (parallel) environment.

Establishing random number generation engine

The following are the routines that allow to establish random number
generation engine to be used in a standalone random numbers generator. The
default random number generator provided by drt is stc.

drt_rand_establishRNG_stc

void drt_rand_establishRNG_stc();

Establishes the random number generation engine to be based on the routine
rand (and related to it) from the standard C library.

drt_rand_establishRNG_mt19937

void drt_rand_establishRNG_mt19937();

Establishes the random number generation engine to be based on the a
variant of the twisted generalized feedback shift-register algorithm, and is
known as the “Mersenne Twister” generator.
Based on the code from here (which also contains disclaimer and the copyright
message).

10

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c

drt_rand_establishRNG

void drt_rand_establishRNG(int arg);

Establishes the random number generation engine as following:
if arg is equal to RNG_mt19937 then mt19937 random number generation
engine is established to be used, otherwise stc random number generation
engine is established to be used.

drt_rand_determineEstablishedRNG

int drt_rand_determineEstablishedRNG()

Returns the value that indicates which random number generation engine is
used:

RNG_stc if stc random number generation engine is used
RNG_mt19937 if mt19937 random number generation engine is used

Functions for random data generation

drt_rand_init

unsigned int drt_rand_init(unsigned int val);

Generate new seed for random number generator using the specified argument
val as a seed .
Returns the seed used. Routines provided by drt guarantee that using the same
argument to this function will result in the same sequence of random numbers
generated.

drt_rand_determineUsedSeed

unsigned int drt_rand_determineUsedSeed();

Returns the value that was used as a seed for random number generation
engine. If no seed was explicitly used then 0 is returned.

drt_rand_getRandNumbersGenerated

unsigned long drt_rand_getRandNumbersGenerated();

Returns the number of time the random number generator of the established
engine was called.

drt_rand_int

int drt_rand_int();

Return random number of the type int.

drt_rand_RAW

int drt_rand_RAW();

11

Return random number of the type int exactly as it is generated by the
underlying random generation engine - no processing is attempted.

drt_rand_long

long drt_rand_long();

Return random number of the type long.

drt_rand_bool

int m_rand_bool();

Return random number of the type int that may be equal to 0 or 1.

drt_rand_float

float drt_rand_float();

Return random number of the type float.

drt_rand_double

double drt_rand_double();

Return random number of the type double.

drt_rand_intRange

int drt_rand_intRange(int rMin, int rMax);

Return random number of the type int in the range between rMin and rMax. If
rMin, rMax specify not a valid range (e.g. rMin > rMax) - return a random
number of the type int.

drt_rand_uintRange

unsigned int drt_rand_uintRange(unsigned int rMin, unsigned int
rMax);

Return random number of the type unsigned int in the range between rMin
and rMax. If rMin, rMax specify not a valid range (e.g. rMin > rMax) - return
a random number of the type unsigned int.

drt_rand_ulongRange

unsigned int drt_rand_ulongRange(unsigned long rMin, unsigned
long rMax);

Return random number of the type unsigned long in the range between rMin
and rMax. If rMin, rMax specify not a valid range (e.g. rMin > rMax) - return
a random number of the type unsigned long.

12

drt_rand_intInitElements

void drt_rand_intInitElements(int *x, unsigned long firstIndx,
unsigned long cnt, int rMin, int rMax);

Starting from the element at the index firstIndx sets cnt elements of the array
x of the integer members to a random integer values in the range between
rMin and rMax.

drt_rand_doubleRange

double drt_rand_doubleRange(double rMin, double rMax);

Return random number of the type double in the range between rMin and
rMax. If rMin, rMax specify not a valid range (e.g. rMin > rMax) - return a
random number of the type double.

drt_rand_doubleInitElements

void drt_rand_doubleInitElements(double *x, unsigned long
firstIndx, unsigned long cnt, double rMin, double rMax);

Starting from the element at the index firstIndx sets cnt elements of the array
x of the double precision members to a random double precision values in the
range between rMin and rMax.

explicit random generation
In explicit random generator drt allows to create and use many instances of
random generator. The user is responsible for creation, maintenance and
destruction of these instances of random generator. The internals are mostly
hidden from the user.

 drt provides special data type drt_rand which is used as a handler for a
random generator. Each explicit random generator shall be allocated by user
calling drt_rand_alloc_handler which returns the value of the type drt_rand
called 'handler' of the created random generator. This value shall be used as
the (first) parameter to most explicit random generator routine. We will refer to
an explicit random generator by referring to it handler of the type drt_rand.

 The name of every explicit random generation routine begins with drt_rand__,
and, in the most cases, the first argument is a variable of the type drt_rand
(the handler) e.g drt__rand_int(drtHandler). Calling explicit random
generation routine with an invalid handler (e.g. NULL) defaults to the
corresponding implicit random generation routine, e.g. instead of
drt__rand_int(NULL) drt_rand_int() is executed.

13

The explicit random number generation is thread safe and may be used in multi-
threaded (parallel) environment.

Establishing random number generation engine

The following are the routines that allow to create and establish explicit random
number generation engine to be used in a standalone random numbers
generator. The only type of explicit random number generator currently
provided by drt is mt19937.

drt_rand__alloc_handler

drt_rand *drt_rand__alloc_handler(int arg);

Establishes the explicit random number generation engine and returns it
handler.
arg specifies the type random generation engine to be created and currently
must be equal to RNG_mt19937.
The explicit random number generation engine established by this routine sets
it seed to zero (which can be later changed by calling drt_rand__init).
If bad arg is specified or there is not sufficient memory to create the generator
- NULL is returned.

Note that this is the only the explicit random number generation routine that
doesn't require the first argument to be a variable of the type drt_rand (the
handler) .

drt_rand__establishRNG

void drt_rand__establishRNG(drt_rand *rngHandler, int arg);

Establishes the random number generation engine for the handler rngHandler
as following:
if rngHandler is NULL then the implicit random generator is affected as
following:

if arg is equal to RNG_mt19937 then mt19937 random number
generation engine is established to be used, otherwise stc random
number generation engine is established to be used.

If rngHandler is a valid handler returned by drt_rand__alloc_handler, then
no action is taken (currently).

Functions for random data generation

drt_rand__init

unsigned int drt_rand__init(drt_rand *rngHandler, unsigned int
val);

Generate new seed for random number generator rngHandler using the
specified argument val as a seed .

14

Returns the seed used. Routines provided by drt guarantee that using the same
argument to this function will result in the same sequence of random numbers
generated.

drt_rand__determineUsedSeed

unsigned int drt_rand__determineUsedSeed(drt_rand *rngHandler);

Returns the value that was used as a seed for random number generator
rngHandler.

drt_rand__getRandNumbersGenerated

unsigned long drt_rand__getRandNumbersGenerated(drt_rand
*rngHandler);

Returns the number of times the random number generator rngHandler was
called.

drt_rand__int

int drt_rand__int(drt_rand *rngHandler);

Return random number of the type int generated by the random number
generator rngHandler.

drt_rand__RAW

int drt_rand__RAW(drt_rand *rngHandler);

Return random number of the type int exactly as it is generated by the
underlying random generation engine of rngHandler - no processing is
attempted.

drt_rand__long

long drt_rand__long(drt_rand *rngHandler);

Return random number of the type long generated by the random number
generator rngHandler.

drt_rand__bool

int m_rand__bool(drt_rand *rngHandler);

Return random number of the type int that may be equal to 0 or 1 generated
by the random number generator rngHandler.

drt_rand__float

float drt_rand__float(drt_rand *rngHandler);

15

Return random number of the type float generated by the random number
generator rngHandler.

drt_rand__double

double drt_rand__double(drt_rand *rngHandler);

Return random number of the type double generated by the random number
generator rngHandler.

drt_rand__intRange

int drt_rand__intRange(drt_rand *rngHandler, int rMin, int rMax);

Return random number of the type int generated by the random number
generator rngHandler in the range between rMin and rMax. If rMin, rMax
specify not a valid range (e.g. rMin > rMax) - return a random number of the
type int generated by the random number generator rngHandler.

drt_rand__uintRange

unsigned int drt_rand__uintRange(drt_rand *rngHandler, unsigned
int rMin, unsigned int rMax);

Return random number of the type unsigned int generated by the random
number generator rngHandler in the range between rMin and rMax. If rMin,
rMax specify not a valid range (e.g. rMin > rMax) - return a random number
of the type unsigned int generated by the random number generator
rngHandler.

drt_rand__ulongRange

unsigned int drt_rand__ulongRange(drt_rand *rngHandler, unsigned
long rMin, unsigned long rMax);

Return random number of the type unsigned long generated by the random
number generator rngHandler in the range between rMin and rMax. If rMin,
rMax specify not a valid range (e.g. rMin > rMax) - return a random number
of the type unsigned long generated by the random number generator
rngHandler.

drt_rand__intInitElements

void drt_rand__intInitElements(drt_rand *rngHandler, init *x,
unsigned long firstIndx, unsigned long cnt, int rMin, int rMax);

Starting from the element at the index firstIndx sets cnt elements of the array
x of the integer members to a random integer values in the range between
rMin and rMax.

16

drt_rand__doubleRange

double drt_rand__doubleRange(drt_rand *rngHandler, double rMin,
double rMax);

Return random number of the type double generated by the random number
generator rngHandler in the range between rMin and rMax. If rMin, rMax
specify not a valid range (e.g. rMin > rMax) - return a random number of the
type double generated by the random number generator rngHandler.

drt_rand__doubleInitElements

void drt_rand__doubleInitElements(drt_rand *rngHandler, double *x,
unsigned long firstIndx, unsigned long cnt, double rMin, double rMax
);

Starting from the element at the index firstIndx sets cnt elements of the array
x of the double precision members to a random double precision values
generated by the random number generator rngHandler in the range between
rMin and rMax.

Examples

testing dco parallelization of a stencil
The following shows how drt was used to perform testing and monitoring of the
parallel code created by dco for the serial stencil for double precision values:

for (i = 1; i < DIM; i++)
 {
 x[i] = x[i] - a[i]/x[i-1];
}

Download the C++ source code for this example from here and the executable
for LINUX OS from here.

Description of the problem

dco is a software optimization package created by Dalsoft that, among many
other functions, performs automatic parallelization of a serial code - see this for
more information.
When the parallel code for the above stencil was created it was necessary to
verify that created code was correct. That was done in the early stages of
testing; after that we decided to find out how accurate the parallel code is -
that is what we are going to show here.

Three execution results were created:

17

http://www.dalsoft.com/
https://products.dalsoft.com/stenciltest.bz2
https://products.dalsoft.com/stenciltest.cpp

• dco result - result of the execution by the parallel code created by dco for
the above stencil

• exact result - result of the execution of the above code using double
precision values

• precise result - result of the execution of the above code using Dalsoft
High Precision (dhp) package - see this for more information.

dco result is generated by the parallel code and is fast. exact result is what the
standard implementation of the above algorithm generates. Due to the inexact
nature of the double precision floating point execution, it is not clear how
accurate these results are. We assume that using high precision data allows to
generate more accurate - precise result. The following use of drt attempts to
compare these results.

Implementation

The implementation requires

• to create the new class (we will call it STENCILTest) derived from
CDRT

• to establish data records to be used in test and implement class
member m_GenRandData() to initialize this data

• to implement class member m_TestRandData() to perform results
generation and collect necessary data about results accuracy

• to implement class member m_DumpReport() to print the
collected information

• to implement function main to execute code testing

The file stenciltest.cpp that contains implemented code may found here.

new class STENCILTest

class STENCILTest : public CDRT
 {

 // Construction
 public:
 STENCILTest();
 ~STENCILTest(){};

 public:
 virtual void m_GenRandData();
 virtual int m_TestRandData();
 virtual void m_DumpReport();

 private:

18

https://www.products.dalsoft.com/stenciltest.cpp
https://www.products.dalsoft.com/dhp.html

maximum relative difference between 'dco result'
and 'exact result' that exceeds 'm_dRelativeErrorThreshold'
 double m_dMaxDiff;
maximum relative difference between 'dco result'
and 'exact result'
 double m_dTotalMaxDiff;

test number were 'm_dMAxDiff' was detected
 unsigned long m_nTestNumberForMaxDiff;
index inside stencil loop were 'm_dMAxDiff' was detected
 unsigned int m_nIndxInternalForMaxDiff;
'dco result' for the test 'm_nTestNumberForMaxDiff at the index
'm_nIndxInternalForMaxDiff'
 double m_d_dco_result;
'exact result' for the test 'm_nTestNumberForMaxDiff at the index
'm_nIndxInternalForMaxDiff'
 double m_d_exact_result;
'precise result' for the test 'm_nTestNumberForMaxDiff at the index
'm_nIndxInternalForMaxDiff'
 dhpreal m_dhp_precise_result;
maximum relative difference between 'dco result' and 'precise result'
 m_dhpDiffdcoMax,
maximum relative difference between 'eact result' and 'precise result'
 m_dhpDiffexactMax;
number of cases were 'dco result' was closer that 'exact result' to
'precise result'
 unsigned long m_n_dcoBetter;
number of cases were 'exact result' was closer that 'dco result' to
'precise result'
 unsigned long m_n_exactBetter;
number of cases were 'exact result' and 'dco result' equaly close to
'precise result'
 unsigned long m_n_dco_exactSame;

error will be reported if if relative difference between 'exact result' and
'dco result' exceeds this value
 double m_dRelativeErrorThreshold;

 };

and the constructor that initializes the fields of the class

STENCILTest::STENCILTest()
 {

 m_dMaxDiff = 0.;

19

 m_dTotalMaxDiff = 0.;

 m_dhpDiffdcoMax = 0.;
 m_dhpDiffexactMax = 0.;
 m_n_dcoBetter = 0;
 m_n_exactBetter = 0;
 m_n_dco_exactSame = 0;

 m_dRelativeErrorThreshold = 10e-16;

 } /* STENCILTest::STENCILTest */

establish data records to be used in test and implement class member
m_GenRandData() to initialize this data

Define the following records to be used:

#define DIM 100000

double a[DIM], storage for stencils coefficients
 x[DIM], storage for 'dco result'
 x1[DIM]; storage for 'exact result'
dhpreal aDHP[DIM], xDHP[DIM];storage for calculation of 'precise
result',

dhpreal being defined by the Dalsoft High Precision (dhp) package

and implement m_GenRandData to randomly set the above records

void STENCILTest::m_GenRandData()
 {
 unsigned int i;

set DIM elements of the arrays 'x' and 'a' to a random double precision
values in the range between 0.1 and 0.2
 drt_rand_doubleInitElements(x, 0, DIM, .1, .2);
 drt_rand_doubleInitElements(a, 0, DIM, .1, .2);

set elements of the array 'x1' and 'xDHP' to those of 'x' and set
elements of the array 'aDHP' to those of 'a'
 for (i = 0; i < DIM; i++)
 {
 x1[i] = x[i];
 xDHP[i] = x[i];

20

 aDHP[i] = a[i];
 }

 } /* STENCILTest::m_GenRandData */

implement class member m_TestRandData() to perform results generation
and collect necessary data about results accuracy

int STENCILTest::m_TestRandData()
 {
 unsigned int i;
 int ret;

 ret = DRT_ATTEMPTED_RUN_OK;

generate 'dco result' in the array 'x' - prepare for parallel code
generation; the code will be processed by the Dalsoft's auto-parallelizer (
dco); dco will be directed to only process (create parallel code for) the
section between ',dco_start' and '.dco_end'
asm("#.dco_start");
 for (i = 1; i < DIM; i++)
 {
 x[i] = x[i] - a[i] / x[i-1];
 }
asm("#.dco_end");

generate 'exact result' in the array 'x1'
 for (i = 1; i < DIM; i++)
 {
 x1[i] = x1[i] - a[i] / x1[i-1];
 }

 generate 'precise result' in the array 'xDHP'
 for (i = 1; i < DIM; i++)
 {
 xDHP[i] = xDHP[i] - aDHP[i] / xDHP[i-1];
 }

 dhpreal xdiffDHP, x1diffDHP;
 double d;

 for (i = 0; i < DIM; i++)
 {
calculate relative difference between 'dco result' and 'precise result'
 xdiffDHP = CalcRelativeDiff(x[i], xDHP[i]);

21

calculate relative difference between 'exact result' and 'precise result'
 x1diffDHP = CalcRelativeDiff(x1[i], xDHP[i]);

 if (xdiffDHP < x1diffDHP)
 {
relative difference between 'dco result' and 'precise result' is smaller
that relative difference between 'exact result' and 'precise result' thus
'dco result' is "better"
 m_n_dcoBetter++;
 }
 else if (xdiffDHP > x1diffDHP)
 {
relative difference between 'exact result' and 'precise result' is smaller
that relative difference between 'dco result' and 'precise result' thus
'exact result' is "better"
 m_n_exactBetter++;
 }
 else
 {
 m_n_dco_exactSame++;
 }

calculate the largest relative difference between
'dco result' and 'precise result'
 if (xdiffDHP > m_dhpDiffdcoMax)
 {
 m_dhpDiffdcoMax = xdiffDHP;
 }
calculate the largest relative difference between
'exact result' and 'precise result'
 if (x1diffDHP > m_dhpDiffexactMax)
 {
 m_dhpDiffexactMax = x1diffDHP;
 }

set 'd' to the relative difference between x[i] and x1[i], note that d >=
0.
 d = CalRelativeDiff(x[i], x1[i]);

calculate the largest relative difference between
'dco result' and 'exact result'
 if (m_dTotalMaxDiff < d)
 {
 m_dTotalMaxDiff = d;
 }

22

 if (d > m_dRelativeErrorThreshold)
 {
relative difference between x[i] and x1[i] exceed the threshold
the error shall be returned

determine if the error detected is the worst error observed
 if (m_dMaxDiff < d)
 {
collect the data about that error
 m_dMaxDiff = d;
 m_nTestNumberForMaxDiff = m_GetCrntTestNumber();
 m_nIndxInternalForMaxDiff = i;
 m_d_dco_result = x[i];
 m_d_exact_result = x1[i];
 m_dhp_precise_result = xDHP[i];
 }
report error being detected
 ret = DRT_ATTEMPTED_RUN_FAILED;
 }
 }

 return ret;

 } /* STENCILTest::m_TestRandData */

implement class member m_DumpReport() to print the collected information

void STENCILTest::m_DumpReport()
 {
 unsigned int i;
 dhpreal x, x1, xx, xx1;
 char s[1024];

 if (m_dMaxDiff == .0)
 {
 printf("Total Max relative deviation: %e\n",
m_dTotalMaxDiff);
 }

 else // if (m_dMaxDiff > .0)
 {
 printf("Max relative deviation: %e\n", m_dMaxDiff);
 printf("Happen in the test case %lu at the index %u\n",
m_nTestNumberForMaxDiff, m_nIndxInternalForMaxDiff);

23

 printf("\tdcoRslt=\t%.17f\n\texactRslt=\t%.17f\n",
m_nIndxInternalForMaxDiff, m_d_dco_result, m_d_exact_result);

get_string' being defined by the Dalsoft High Precision (dhp) package
and generates inside array 's' up to 32 decimal digits of the argument
 m_dhp_precise_result.get_string(s, 1023, 32);
 printf("\tpreciseRslt=\t%s\n", s);

 printf("\tAbsDiff_dco_exact\t%.17f\n",
 fabs(m_d_dco_result - m_d_exact_result));

 x = m_d_dco_result;
 x1 = m_d_exact_result;

 xx = fabs(x - m_dhp_precise_result);
 xx.get_string(s, 1023, 32);
 printf("\tAbsDiff_dco_precise\t%s\n", s);

 xx1 = fabs(x1 - m_dhp_precise_result);
 xx1.get_string(s, 1023, 32);
 printf("\tAbsDiff_exact_precise\t%s\n", s);

 printf("\n");
 }

 printf("MaxRelativeDiff:\n");

 m_dhpDiffdcoMax.get_string(s, 1023, 32);
 printf("\tdco_precise\t%s\n", s);

 m_dhpDiffexactMax.get_string(s, 1023, 32);
 printf("\texact_precise\t%s\n", s);

 printf("\ndco results better in\t%lu cases\nexact results
better in\t%lu cases\nresults are the Same in\t%lu cases\n",
m_n_dcoBetter, m_n_exactBetter, m_n_dco_exactSame);

 printf("\n");
print data collected by DRT
 CDRT::m_DumpReport();

 } /* STENCILTest::m_DumpReport */

implement function main to execute code testing

int main(int ac, char **av)

24

 {
create class for stencil testing
 STENCILTest rt;

process command line arguments the program was invoked with
 int stat;
 stat = rt.m_GetOptions(ac, av);
 if (stat == DRT_OPTION_EXIT_OK)
 {
 exit(0);
 }
 else if (stat == DRT_OPTION_EXIT_ERROR)
 {
 exit(1);
 }

run the test(s)
 rt.m_RunTest();

 exit(0);

 } /* main */

creating the executable

The file stenciltest.cpp contains the above described implemented code. The
following steps shall be taken to create an executable stenciltest. In the
following example we are using g++ C++ compiler.

g++ -O2 -S stenciltest.cpp
compile the input file stenciltest.cpp creationg optimized assembly
version of it stenciltest.s

dco -i stenciltest.s -o stenciltest_dco.s -slct -parallel
process the generated file stenciltest.s by the Dalsoft's auto-parallelizer (
dco) creating file stenciltest_dco.s;

 -slct command line option directs dco to only process (create
parallel code for) section between ',dco_start' and '.dco_end'.
-parallel command line option directs dco to auto-parallelize (create
parallel version of) the processed code

g++ -o stenciltest stenciltest_dco.s -fopenmp -ldrt -ldhp
generate executable file stenciltest out of the assembly file
stenciltest_dco.s created by dco.
note the library that is necessary to use during linking:

-fopenmp - to provide OpenMP routines used by dco during creation of
parallel code
-ldrt - to provide functionality of the Dalsoft Random Test (drt)
package utilized by the code
-dhp - to provide routines from the Dalsoft High Precision (dhp)

25

package utilized by the code
rm stenciltest_dco.s

perform cleanup

usage of the test

Let run the created executable stenciltest for 100 seconds utilizing random
number seed provided (be default) by drt:

./stenciltest -t 100
were

-t 100 - specifies time in seconds to run test for

The output generated is

Max relative deviation: 6.365827e-12
Happen in the test case 42 at the index 50274

dcoRslt= -0.00025070513187596
exactRslt= -0.00025070513187755
preciseRslt= -0.00025070513187722356057969993215
AbsDiff_dco_exact 0.00000000000000160
AbsDiff_dco_precise 0.00000000000000126511817962356743
AbsDiff_exact_precise 0.00000000000000033082741827509509

MaxRelativeDiff:
dco_precise0.00000005343040798557957730620889
exact_precise 0.00000005343040798557957730620889

dco results better in 4162 cases
exact results better in 9886 cases
results are the Same in 7785952 cases

Total 78, Attempted 78, Done 78 cases for 100.114 seconds error count
= 71.
Random number generator seed used 1588490732.

from which we conclude that the maximum relative difference between dco
result and exact result is 6.365827e-12 and it happened during execution of the
42's test case (counting of test cases starts with 0, thus 42 cases were
executed before this condition was detected) while processing stencil member
with the index 50272; the various data about this ("worst") case is listed.

Also listed the maximum (for all the test cases attempted) relative difference
between dco result and precise result and exact result and precise result.

For all the test cases attempted
dco result was better (closer to precise result) that exact result 4162 times
exact result was better that dco result 9886 times
dco result was the same as exact result 7785952 times

26

During execution 78 cases were processed and 71 "errors" were detected (the
relative difference between dco result and exact result exceeded
m_dRelativeErrorThreshold that was set to be 10e-16). Random number
generator seed used was 1588490732.

Should we desire to recreate the worst case determined in the previous
example, just execute:

./stenciltest -nsi 1588490732 -s 42 -c 1
were

-nsi 1588490732 - establishes seed for the random number generator (the
same as used in the previous run)
-s 42 - requests to skip the first 42 test cases
-c 1 - requests to execute one test case only

The output generated is

skiping 42 cases...done.
Max relative deviation: 6.365827e-12
Happen in the test case 0 at the index 50274

dcoRslt= -0.00025070513187596
exactRslt= -0.00025070513187755
preciseRslt= -0.00025070513187722356057969993215
AbsDiff_dco_exact 0.00000000000000160
AbsDiff_dco_precise 0.00000000000000126511817962356743
AbsDiff_exact_precise 0.00000000000000033082741827509509

MaxRelativeDiff:
dco_precise0.00000000010812651015362232920059
exact_precise 0.00000000010812651015362232920059

dco results better in 81 cases
exact results better in 436 cases
results are the Same in 99483 cases

Total 43, Attempted 1, Done 1 cases for 1.27241 seconds error count =
1.
Random number generator seed used 1588490732.

The ability to exactly recreate a test case allows to perform a detailed analysis
of the problem and even debug the code for the data that was determined to
be problematic.

27

Table of Contents
General..2

Technical specifications...2
Installation...3

Compiling and linking with the drt library...3
Random numbers generation..3

Evaluation of the random number generation engines....................................4
Using drt..5
Programming with drt..6

Working Environment..6
controlling duration of the executions...6
establishing initial environment...6

Member functions..7
General Control..7

m_GetOptions...7
m_GetParam...8
m_GetDParam..8

Running and monitoring test executions...8
m_GenRandData..8
m_ShallTerminateRunTest..8
m_TestRandData..8
m_RunTest..9
m_GetCrntTestNumber...9
m_GetRandNumbersGeneratedBeforeCrntTest..9
m_DumpReport..9

Standalone random data generator...10
implicit random generation..10

Establishing random number generation engine.......................................10
drt_rand_establishRNG_stc...10
drt_rand_establishRNG_mt19937...10
drt_rand_establishRNG...11
drt_rand_determineEstablishedRNG...11

Functions for random data generation...11
drt_rand_init...11
drt_rand_determineUsedSeed..11
drt_rand_getRandNumbersGenerated..11
drt_rand_int..11
drt_rand_RAW...11
drt_rand_long...12
drt_rand_bool...12
drt_rand_float...12
drt_rand_double...12
drt_rand_intRange..12
drt_rand_uintRange..12
drt_rand_ulongRange...12
drt_rand_intInitElements..13
drt_rand_doubleRange...13

28

drt_rand_doubleInitElements..13
explicit random generation..13

Establishing random number generation engine.......................................14
drt_rand__alloc_handler..14
drt_rand__establishRNG...14

Functions for random data generation...14
drt_rand__init..14
drt_rand__determineUsedSeed...15
drt_rand__getRandNumbersGenerated..15
drt_rand__int...15
drt_rand__RAW...15
drt_rand__long..15
drt_rand__bool..15
drt_rand__float..15
drt_rand__double..16
drt_rand__intRange..16
drt_rand__uintRange..16
drt_rand__ulongRange..16
drt_rand__intInitElements...16
drt_rand__doubleRange..16
drt_rand__doubleInitElements..17

Examples...17
testing dco parallelization of a stencil...17

Description of the problem...17
Implementation..18

new class STENCILTest...18
establish data records to be used in test and implement class member
m_GenRandData() to initialize this data...20
implement class member m_TestRandData() to perform results
generation and collect necessary data about results accuracy..............21
implement class member m_DumpReport() to print the collected
information...23
implement function main to execute code testing.................................24

creating the executable...25
usage of the test..26

29

	General
	Technical specifications
	Installation

	Compiling and linking with the drt library
	Random numbers generation
	Evaluation of the random number generation engines

	Using drt
	Programming with drt
	Working Environment
	controlling duration of the executions
	establishing initial environment

	Member functions
	General Control
	m_GetOptions
	m_GetParam
	m_GetDParam

	Running and monitoring test executions
	m_GenRandData
	m_ShallTerminateRunTest
	m_TestRandData
	m_RunTest
	m_GetCrntTestNumber
	m_GetRandNumbersGeneratedBeforeCrntTest
	m_DumpReport

	Standalone random data generator
	implicit random generation
	Establishing random number generation engine
	drt_rand_establishRNG_stc
	drt_rand_establishRNG_mt19937
	drt_rand_establishRNG
	drt_rand_determineEstablishedRNG

	Functions for random data generation
	drt_rand_init
	drt_rand_determineUsedSeed
	drt_rand_getRandNumbersGenerated
	drt_rand_int
	drt_rand_RAW
	drt_rand_long
	drt_rand_bool
	drt_rand_float
	drt_rand_double
	drt_rand_intRange
	drt_rand_uintRange
	drt_rand_ulongRange
	drt_rand_intInitElements
	drt_rand_doubleRange
	drt_rand_doubleInitElements

	explicit random generation
	Establishing random number generation engine
	drt_rand__alloc_handler
	drt_rand__establishRNG

	Functions for random data generation
	drt_rand__init
	drt_rand__determineUsedSeed
	drt_rand__getRandNumbersGenerated
	drt_rand__int
	drt_rand__RAW
	drt_rand__long
	drt_rand__bool
	drt_rand__float
	drt_rand__double
	drt_rand__intRange
	drt_rand__uintRange
	drt_rand__ulongRange
	drt_rand__intInitElements
	drt_rand__doubleRange
	drt_rand__doubleInitElements

	Examples
	testing dco parallelization of a stencil
	Description of the problem
	Implementation
	new class STENCILTest
	establish data records to be used in test and implement class member m_GenRandData() to initialize this data
	implement class member m_TestRandData() to perform results generation and collect necessary data about results accuracy
	implement class member m_DumpReport() to print the collected information
	implement function main to execute code testing

	creating the executable
	usage of the test

